Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mechanism of frataxin "bypass" in human iron-sulfur cluster biosynthesis with implications for Friedreich's ataxia.

Identifieur interne : 000150 ( Main/Exploration ); précédent : 000149; suivant : 000151

Mechanism of frataxin "bypass" in human iron-sulfur cluster biosynthesis with implications for Friedreich's ataxia.

Auteurs : Deepika Das [États-Unis] ; Shachin Patra [États-Unis] ; Jennifer Bridwell-Rabb [États-Unis] ; David P. Barondeau [États-Unis]

Source :

RBID : pubmed:30975898

Descripteurs français

English descriptors

Abstract

In humans, mitochondrial iron-sulfur cluster biosynthesis is an essential biochemical process mediated by the assembly complex consisting of cysteine desulfurase (NFS1), LYR protein (ISD11), acyl-carrier protein (ACP), and the iron-sulfur cluster assembly scaffold protein (ISCU2). The protein frataxin (FXN) is an allosteric activator that binds the assembly complex and stimulates the cysteine desulfurase and iron-sulfur cluster assembly activities. FXN depletion causes loss of activity of iron-sulfur-dependent enzymes and the development of the neurodegenerative disease Friedreich's ataxia. Recently, a mutation that suppressed the loss of the FXN homolog in Saccharomyces cerevisiae was identified that encodes an amino acid substitution equivalent to the human variant ISCU2 M140I. Here, we developed iron-sulfur cluster synthesis and transfer functional assays and determined that the human ISCU2 M140I variant can substitute for FXN in accelerating the rate of iron-sulfur cluster formation on the monothiol glutaredoxin (GRX5) acceptor protein. Incorporation of both FXN and the M140I substitution had an additive effect, suggesting an acceleration of distinct steps in iron-sulfur cluster biogenesis. In contrast to the canonical role of FXN in stimulating the formation of [2Fe-2S]-ISCU2 intermediates, we found here that the M140I substitution in ISCU2 promotes the transfer of iron-sulfur clusters to GRX5. Together, these results reveal an unexpected mechanism that replaces FXN-based stimulation of the iron-sulfur cluster biosynthetic pathway and suggest new strategies to overcome the loss of cellular FXN that may be relevant to the development of therapeutics for Friedreich's ataxia.

DOI: 10.1074/jbc.RA119.007716
PubMed: 30975898
PubMed Central: PMC6556584


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mechanism of frataxin "bypass" in human iron-sulfur cluster biosynthesis with implications for Friedreich's ataxia.</title>
<author>
<name sortKey="Das, Deepika" sort="Das, Deepika" uniqKey="Das D" first="Deepika" last="Das">Deepika Das</name>
<affiliation wicri:level="2">
<nlm:affiliation>From the Department of Chemistry, Texas A & M University, College Station, Texas 77842.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Texas</region>
</placeName>
<wicri:cityArea>From the Department of Chemistry, Texas A & M University, College Station</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Patra, Shachin" sort="Patra, Shachin" uniqKey="Patra S" first="Shachin" last="Patra">Shachin Patra</name>
<affiliation wicri:level="2">
<nlm:affiliation>From the Department of Chemistry, Texas A & M University, College Station, Texas 77842.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Texas</region>
</placeName>
<wicri:cityArea>From the Department of Chemistry, Texas A & M University, College Station</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Bridwell Rabb, Jennifer" sort="Bridwell Rabb, Jennifer" uniqKey="Bridwell Rabb J" first="Jennifer" last="Bridwell-Rabb">Jennifer Bridwell-Rabb</name>
<affiliation wicri:level="2">
<nlm:affiliation>From the Department of Chemistry, Texas A & M University, College Station, Texas 77842.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Texas</region>
</placeName>
<wicri:cityArea>From the Department of Chemistry, Texas A & M University, College Station</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Barondeau, David P" sort="Barondeau, David P" uniqKey="Barondeau D" first="David P" last="Barondeau">David P. Barondeau</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the Department of Chemistry, Texas A & M University, College Station, Texas 77842 barondeau@tamu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>From the Department of Chemistry, Texas A & M University, College Station</wicri:regionArea>
<wicri:noRegion>College Station</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30975898</idno>
<idno type="pmid">30975898</idno>
<idno type="doi">10.1074/jbc.RA119.007716</idno>
<idno type="pmc">PMC6556584</idno>
<idno type="wicri:Area/Main/Corpus">000151</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000151</idno>
<idno type="wicri:Area/Main/Curation">000151</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000151</idno>
<idno type="wicri:Area/Main/Exploration">000151</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mechanism of frataxin "bypass" in human iron-sulfur cluster biosynthesis with implications for Friedreich's ataxia.</title>
<author>
<name sortKey="Das, Deepika" sort="Das, Deepika" uniqKey="Das D" first="Deepika" last="Das">Deepika Das</name>
<affiliation wicri:level="2">
<nlm:affiliation>From the Department of Chemistry, Texas A & M University, College Station, Texas 77842.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Texas</region>
</placeName>
<wicri:cityArea>From the Department of Chemistry, Texas A & M University, College Station</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Patra, Shachin" sort="Patra, Shachin" uniqKey="Patra S" first="Shachin" last="Patra">Shachin Patra</name>
<affiliation wicri:level="2">
<nlm:affiliation>From the Department of Chemistry, Texas A & M University, College Station, Texas 77842.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Texas</region>
</placeName>
<wicri:cityArea>From the Department of Chemistry, Texas A & M University, College Station</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Bridwell Rabb, Jennifer" sort="Bridwell Rabb, Jennifer" uniqKey="Bridwell Rabb J" first="Jennifer" last="Bridwell-Rabb">Jennifer Bridwell-Rabb</name>
<affiliation wicri:level="2">
<nlm:affiliation>From the Department of Chemistry, Texas A & M University, College Station, Texas 77842.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Texas</region>
</placeName>
<wicri:cityArea>From the Department of Chemistry, Texas A & M University, College Station</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Barondeau, David P" sort="Barondeau, David P" uniqKey="Barondeau D" first="David P" last="Barondeau">David P. Barondeau</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the Department of Chemistry, Texas A & M University, College Station, Texas 77842 barondeau@tamu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>From the Department of Chemistry, Texas A & M University, College Station</wicri:regionArea>
<wicri:noRegion>College Station</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Allosteric Regulation (MeSH)</term>
<term>Carbon-Sulfur Lyases (metabolism)</term>
<term>Friedreich Ataxia (metabolism)</term>
<term>Friedreich Ataxia (pathology)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Iron-Binding Proteins (genetics)</term>
<term>Iron-Binding Proteins (metabolism)</term>
<term>Iron-Sulfur Proteins (genetics)</term>
<term>Iron-Sulfur Proteins (metabolism)</term>
<term>Kinetics (MeSH)</term>
<term>Mutagenesis, Site-Directed (MeSH)</term>
<term>Protein Binding (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Ataxie de Friedreich (anatomopathologie)</term>
<term>Ataxie de Friedreich (métabolisme)</term>
<term>Carbon-sulfur lyases (métabolisme)</term>
<term>Cinétique (MeSH)</term>
<term>Ferrosulfoprotéines (génétique)</term>
<term>Ferrosulfoprotéines (métabolisme)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Mutagenèse dirigée (MeSH)</term>
<term>Protéines de liaison au fer (génétique)</term>
<term>Protéines de liaison au fer (métabolisme)</term>
<term>Régulation allostérique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Iron-Binding Proteins</term>
<term>Iron-Sulfur Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon-Sulfur Lyases</term>
<term>Glutaredoxins</term>
<term>Iron-Binding Proteins</term>
<term>Iron-Sulfur Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Ataxie de Friedreich</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Ferrosulfoprotéines</term>
<term>Protéines de liaison au fer</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Friedreich Ataxia</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Ataxie de Friedreich</term>
<term>Carbon-sulfur lyases</term>
<term>Ferrosulfoprotéines</term>
<term>Glutarédoxines</term>
<term>Protéines de liaison au fer</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Friedreich Ataxia</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Allosteric Regulation</term>
<term>Humans</term>
<term>Kinetics</term>
<term>Mutagenesis, Site-Directed</term>
<term>Protein Binding</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cinétique</term>
<term>Humains</term>
<term>Liaison aux protéines</term>
<term>Mutagenèse dirigée</term>
<term>Régulation allostérique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In humans, mitochondrial iron-sulfur cluster biosynthesis is an essential biochemical process mediated by the assembly complex consisting of cysteine desulfurase (NFS1), LYR protein (ISD11), acyl-carrier protein (ACP), and the iron-sulfur cluster assembly scaffold protein (ISCU2). The protein frataxin (FXN) is an allosteric activator that binds the assembly complex and stimulates the cysteine desulfurase and iron-sulfur cluster assembly activities. FXN depletion causes loss of activity of iron-sulfur-dependent enzymes and the development of the neurodegenerative disease Friedreich's ataxia. Recently, a mutation that suppressed the loss of the
<i>FXN</i>
homolog in
<i>Saccharomyces cerevisiae</i>
was identified that encodes an amino acid substitution equivalent to the human variant ISCU2 M140I. Here, we developed iron-sulfur cluster synthesis and transfer functional assays and determined that the human ISCU2 M140I variant can substitute for FXN in accelerating the rate of iron-sulfur cluster formation on the monothiol glutaredoxin (GRX5) acceptor protein. Incorporation of both FXN and the M140I substitution had an additive effect, suggesting an acceleration of distinct steps in iron-sulfur cluster biogenesis. In contrast to the canonical role of FXN in stimulating the formation of [2Fe-2S]-ISCU2 intermediates, we found here that the M140I substitution in ISCU2 promotes the transfer of iron-sulfur clusters to GRX5. Together, these results reveal an unexpected mechanism that replaces FXN-based stimulation of the iron-sulfur cluster biosynthetic pathway and suggest new strategies to overcome the loss of cellular FXN that may be relevant to the development of therapeutics for Friedreich's ataxia.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30975898</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>06</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>294</Volume>
<Issue>23</Issue>
<PubDate>
<Year>2019</Year>
<Month>06</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Mechanism of frataxin "bypass" in human iron-sulfur cluster biosynthesis with implications for Friedreich's ataxia.</ArticleTitle>
<Pagination>
<MedlinePgn>9276-9284</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.RA119.007716</ELocationID>
<Abstract>
<AbstractText>In humans, mitochondrial iron-sulfur cluster biosynthesis is an essential biochemical process mediated by the assembly complex consisting of cysteine desulfurase (NFS1), LYR protein (ISD11), acyl-carrier protein (ACP), and the iron-sulfur cluster assembly scaffold protein (ISCU2). The protein frataxin (FXN) is an allosteric activator that binds the assembly complex and stimulates the cysteine desulfurase and iron-sulfur cluster assembly activities. FXN depletion causes loss of activity of iron-sulfur-dependent enzymes and the development of the neurodegenerative disease Friedreich's ataxia. Recently, a mutation that suppressed the loss of the
<i>FXN</i>
homolog in
<i>Saccharomyces cerevisiae</i>
was identified that encodes an amino acid substitution equivalent to the human variant ISCU2 M140I. Here, we developed iron-sulfur cluster synthesis and transfer functional assays and determined that the human ISCU2 M140I variant can substitute for FXN in accelerating the rate of iron-sulfur cluster formation on the monothiol glutaredoxin (GRX5) acceptor protein. Incorporation of both FXN and the M140I substitution had an additive effect, suggesting an acceleration of distinct steps in iron-sulfur cluster biogenesis. In contrast to the canonical role of FXN in stimulating the formation of [2Fe-2S]-ISCU2 intermediates, we found here that the M140I substitution in ISCU2 promotes the transfer of iron-sulfur clusters to GRX5. Together, these results reveal an unexpected mechanism that replaces FXN-based stimulation of the iron-sulfur cluster biosynthetic pathway and suggest new strategies to overcome the loss of cellular FXN that may be relevant to the development of therapeutics for Friedreich's ataxia.</AbstractText>
<CopyrightInformation>© 2019 Das et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Das</LastName>
<ForeName>Deepika</ForeName>
<Initials>D</Initials>
<Identifier Source="ORCID">0000-0001-8145-2671</Identifier>
<AffiliationInfo>
<Affiliation>From the Department of Chemistry, Texas A & M University, College Station, Texas 77842.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Patra</LastName>
<ForeName>Shachin</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">0000-0003-4223-1731</Identifier>
<AffiliationInfo>
<Affiliation>From the Department of Chemistry, Texas A & M University, College Station, Texas 77842.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bridwell-Rabb</LastName>
<ForeName>Jennifer</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0002-7437-6217</Identifier>
<AffiliationInfo>
<Affiliation>From the Department of Chemistry, Texas A & M University, College Station, Texas 77842.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Barondeau</LastName>
<ForeName>David P</ForeName>
<Initials>DP</Initials>
<Identifier Source="ORCID">0000-0002-6422-9053</Identifier>
<AffiliationInfo>
<Affiliation>From the Department of Chemistry, Texas A & M University, College Station, Texas 77842 barondeau@tamu.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM096100</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>04</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C506160">ISCU protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D033862">Iron-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007506">Iron-Sulfur Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C098527">frataxin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.4.-</RegistryNumber>
<NameOfSubstance UI="D013437">Carbon-Sulfur Lyases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.4.1.-</RegistryNumber>
<NameOfSubstance UI="C080546">cysteine desulfurase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000494" MajorTopicYN="N">Allosteric Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013437" MajorTopicYN="N">Carbon-Sulfur Lyases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005621" MajorTopicYN="N">Friedreich Ataxia</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="Y">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D033862" MajorTopicYN="N">Iron-Binding Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007506" MajorTopicYN="N">Iron-Sulfur Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">ISCU2 M140I</Keyword>
<Keyword MajorTopicYN="Y">analytical ultracentrifugation</Keyword>
<Keyword MajorTopicYN="Y">circular dichroism (CD)</Keyword>
<Keyword MajorTopicYN="Y">cysteine labeling</Keyword>
<Keyword MajorTopicYN="Y">enzyme kinetics</Keyword>
<Keyword MajorTopicYN="Y">fluorescence anisotropy</Keyword>
<Keyword MajorTopicYN="Y">iron–sulfur assembly</Keyword>
<Keyword MajorTopicYN="Y">iron–sulfur protein</Keyword>
<Keyword MajorTopicYN="Y">mitochondrial disease</Keyword>
<Keyword MajorTopicYN="Y">neurodegeneration</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>01</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>04</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>4</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>4</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30975898</ArticleId>
<ArticleId IdType="pii">RA119.007716</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.RA119.007716</ArticleId>
<ArticleId IdType="pmc">PMC6556584</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 2006 Jan 11;25(1):174-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16341090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2015 Jan;16(1):45-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25425402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Sep 12;283(37):25178-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18650437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2013 Oct 18;440(2):235-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24045011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Jun 27;45(25):7767-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16784228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1965 Apr;11:126-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14328633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2015 Jan 14;137(1):390-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25478817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 Mar 8;271(5254):1423-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8596916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2010 Nov 2;49(43):9132-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20873749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Aug 14;284(33):21971-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19491103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2013 Jan 16;135(2):733-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23265191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Jul 9;305(5681):242-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15247478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1983 Jun;131(2):373-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6614472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2013 Aug 01;5(8):a011312</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23906713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1982 May 5;157(1):105-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7108955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2010 Apr 15;19(R1):R103-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20413654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2011;498:399-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21601687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2014 Apr 1;459(1):71-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24433162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Jan 19;6:5686</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25597503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 2018 Sep;152:211-218</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30031876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2015 Jun 30;54(25):3871-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26016389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Jul 3;114(27):E5325-E5334</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28634302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2005;74:247-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15952888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2014 Aug 5;53(30):4904-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24971490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2011 Aug 23;50(33):7265-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21776984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Aug 13;460(7257):831-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19675643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2006 Jan 11;25(1):184-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16341089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Chem Biol. 2017 Apr 21;12(4):918-921</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28233492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2004 Dec 1;13(23):3007-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15509595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2011 Jul 26;50(29):6478-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21671584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2009 Aug 15;18(16):3014-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19454487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 2015 Aug;115:120-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26032732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1988;158:357-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3374387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Dec 27;288(52):36773-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24217246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2012 Jan 1;441(1):473-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21936771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1989 Nov 1;182(2):319-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2610349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2015 Jun 30;54(25):3880-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26016518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Aug 11;281(32):22493-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16769722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2002 Aug 15;11(17):2025-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12165564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2018 Mar 6;57(9):1491-1500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29406711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2016 Aug 19;5:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27540631</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Texas</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Texas">
<name sortKey="Das, Deepika" sort="Das, Deepika" uniqKey="Das D" first="Deepika" last="Das">Deepika Das</name>
</region>
<name sortKey="Barondeau, David P" sort="Barondeau, David P" uniqKey="Barondeau D" first="David P" last="Barondeau">David P. Barondeau</name>
<name sortKey="Bridwell Rabb, Jennifer" sort="Bridwell Rabb, Jennifer" uniqKey="Bridwell Rabb J" first="Jennifer" last="Bridwell-Rabb">Jennifer Bridwell-Rabb</name>
<name sortKey="Patra, Shachin" sort="Patra, Shachin" uniqKey="Patra S" first="Shachin" last="Patra">Shachin Patra</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000150 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000150 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30975898
   |texte=   Mechanism of frataxin "bypass" in human iron-sulfur cluster biosynthesis with implications for Friedreich's ataxia.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30975898" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020